

Universal Battery Monitor Using the bq2018 Power Minder™ IC

Features

- Counts charge and discharge for Li-Ion, NiCd, NiMH, and other chemistries
- Works with host controller to form comprehensive battery pack monitor
- Direct connection to battery stack
- Connects to 4 to 12 series NiCd/NiMH cells or 2 to 4 Li-Ion series cells; other configurations available
- Low operating current
- Measures a wide dynamic range of current
- Small size
 - Entire circuit can fit on less than 0.5 square inches of PCB space
- Low implementation cost
 - Fewer than 15 discrete components required

Typical Applications

- Cellular telephones
- Personal digital assistants
- Other portable handheld equipment

Series 2018, Number One

Figure 1. bq2018 Circuit Connection

General Description

The circuit shown in Figure 3 is a typical bq2018 Power Minder implementation. The battery is connected between BAT+ and BAT-. Q1 and C5, in conjunction with the REG output, regulate the supply voltage to the bq2018 to between 3.5V and 3.9V for the varying battery input at BAT+. The SR V-to-F input pins sense the charge and discharge current using the low-value resistor R1.

A microcontroller communicates with the Power Minder IC using an I/O port connected to the bq2018 HDQ pin. The microcontroller reads the charge/discharge and timer counters of the bq2018 and calculates remaining battery capacity for communication to the user or to the system's power management controls. The bq2018 WAKE output pin alerts the microcontroller that charge/discharge activity greater than a programmable level is taking place.

The circuit monitors a battery pack of any chemistry. The typical operating parameters of the circuit are:

Symbol	Parameter	Units
VI	Input voltage BAT+ to BAT-	3.5V to 18.0V
I _{SR}	Measurable current range	± 4A Max.(1)
I _{OPR}	Operating current	80μΑ
I _S Sleep current		10μΑ
IBACK	Register backup current	< 0.1µA (2)

(1) Assumes $50m\Omega$ 1W sense resistor and bq2018 offset compensation. (2) Provides years of backup time when using cell(s) from the battery stack.

Sense Resistor Selection

R1 must be sized properly to measure the entire range of charge and discharge currents in the application within the limits of the bq2018. The input parameters include:

- 1. The potential of the SR input is limited to -200mV to +200mV. The charge/discharge currents through the sense resistor must not produce a voltage greater than ±200mV.
- 2. The bq2018 counts charge and discharge at a rate of 12.5μ V per hour. Signals < 12.5μ V require greater than one hour to resolve. The designer should consider the resolution vs. time when selecting a sense resistor.

The sense resistor must also handle the power dissipation of all charge and discharge activity. The circuit example uses a $50m\Omega$ 1W sense resistor.

Measurement Offset

The bq2018 has a calibration test mode that measures the offset of the bq2018 based circuit. A final test setup for the battery pack can enable this mode by setting the appropriate bits in the bq2018. When the bq2018 is in calibration mode, no charge/discharge current should be applied. In calibration mode, the bq2018 measures the circuit offset and latches a value in the offset adjustment register. The host microcontroller uses the value in the register to periodically adjust the charge and discharge count values from the bq2018.

Note: Board layout affects offset. C2, C3, and C5 should be as close to the bq2018 as practical. Figure 2 shows one example of how to lay out the circuit in Figure 3.

Parts List

ltem	Quantity	Reference	Part
1	1	U1	bq2018
2	2	R4, R6	1K
3	1	R5	100
4	2	R3, R2	100K
5	1	C1	0.1μF/1.0μF
6	3	C4, C2, C3	0.1µF
7	1	C5	0.01µF/0.001µF
8	1	Q1	SST108
9	1	D3	BAV99
10	1	R1	0.05Ω tolerance = 2%, Watt = 1W
11	2	D2, D1	BZX84C5V6 Zener

Figure 2. bq2018 Circuit Board Layout

Microcode Example for HDQ Interface

;TITLE "HDQ.A ;LAST UPDATE: ;TIMING VALUES	ASM — 201XH 04/15/96 ARE FOR 8.0	INTERFACE" MHz CRYSTAL	
RAM ASS	IGNMEN	Т	
W RTCC PC STATUS	EQU EQU EQU EQU	00H 01H 02H 03H	;PROGRAM COUNTER
X ;	EQU	04H	;FILE SELECT
; PORTB ;	EQU	06н	;PORTB 0 is HDQ line
TIMEOUT HSERDAT HSERBIT WSTACK •	EQU EQU EQU EQU	0AH 0BH 0CH 0DH	;TIMEOUT FLAG, 0=NO TIMEOUT ;HIGH SERIAL DATA REGISTER ;HIGH SERIAL BIT COUNTER ;TEMP STORE FOR W REGISTER
HCMD	EQU	OFH	;HOST COMMAND
, BTRIS	EQU	1 FH	;MIRROR TRISB
ORG	00H		
RESET	GOTO	BEGIN	
; SUBROUT	INES		
; HIGH-SPEED SE	ERVICE FOR B	ATTERY	
,HS_SERVA	MOVLW MOVWF	08H HSERBIT	;LOAD BIT COUNTER ;WITH 8 FOR 8 BITS
READIT CLRF	WSTACK	THEOLE	;GET TIMEOUT READY
HABQR0	BTFSS	PORTB, 0	;REQUEST FOR HS
	DECFSZ GOTO	WSTACK,1 HABQR0	;COUNT FOR TIMEOUT
; ; TIME-OUT ON F	RECEIVE	-	
;	MOVLW	OFFH	
	MOVWF GOTO	TIMEOUT BREAKIT	
; HABQR1 RRF	HSERDAT,1 CLRF	WSTACK	;SHIFT DATA ;TIME LOW TIME
HABQR2	BTFSC GOTO INCF BTFSS GOTO	PORTB,0 HABQR3 WSTACK,1 WSTACK,6 HABQR2	;CHECK FOR STOP BIT ;BREAK DURING READ LOW 144us
; ;break detected)		
; BREAKIT	CLRF MOVLW MOVWF	HCMD 08H HSERBIT	; CANCEL PENDING COMMAND ;LOAD BIT COUNTER ; WITH 8 FOR 8 BITS
HABQR5	NOP BTFSS GOTO RETLW	PORTB,0 HABQR5 00H	;CHECK FOR STOP BIT ;WILL LOOP FOREVER IF LINE STAYS LOW ;DONE
, HABQR3	BSF MOVLW ANDWF BTFSS BCF DECFSZ	HSERDAT,7 30H WSTACK,W STATUS,2 HSERDAT,7 HSERDAT,1	
;	GOTO	READIT	;MORE TO DO!
;	MOVF	HSERDAT,W	
DONE_WA	MOVWF MOVLW MOVWF RETLW	HCMD 08H HSERBIT 00H	;LOAD BIT COUNTER ; WITH 8 FOR 8 BITS
; ; SNDA_IT WILL	SEND ONE BY	TE TO HDQ MODULE	
; SNDA_IT	MOVLW MOVWF	08H HSERBIT	;LOAD BIT COUNTER ;WITH 8 FOR 8 BITS
; ;DELAY A BIT			
;	CLRF	HCMD	

Microcode Example for HDQ Interface (continued)

snda_1	INCF BTFSS GOTO	HCMD,1 HCMD,6 SNDA 1	
; snda_2	BCF MOVF TRIS CLRF	BTRIS,0 BTRIS,W PORTB HCMD	
; snda_3	INCF BTFSS GOTO	HCMD,1 HCMD,4 SNDA_3	
; SNDA_5	BTFSS GOTO	HSERDAT,0 SNDA_4	;TEST DATA BIT
'	BSF MOVF TRIS	BTRIS,0 BTRIS,W PORTB	
; snda_4	CLRF	HCMD	
; snda_7	INCF BTFSS GOTO	HCMD,1 HCMD,5 SNDA_7	
;	BSF MOVF TRIS	BTRIS,0 BTRIS,W PORTB	
;	CLRF BSF	HCMD HCMD,4	
, snda_9	INCF BTFSS GOTO	HCMD,1 HCMD,6 SNDA_9	
	RRF DECFSZ GOTO	HSERDAT,1 HSERBIT,1 SNDA_2	;SHIFT DATA, FOR NEXT BIT ;DEC COUNTER ;MORE BITS TO SEND
,	CLRF MOVLW MOVWF RETLW	HCMD 08H HSERBIT 00H	;LOAD BIT COUNTER ; WITH 8 FOR 8 BITS ;NO, DONE
; ;INITIAI	JIZATI	o n	
; BEGIN	CLRWDT MOVLW OPTION	06н	
	CLRW MOVWF MOVLW MOVWF TRIS	PORTB 03H BTRIS PORTB	;SET UP PORT
	MOVLW MOVWF	USH HSERBIT	;LOAD BIT COUNTER ;WITH 8 FOR 8 BIT
OTHER USER COL	DE		
;READ EXAMPLE ; .READ DCR			
;	MOVIW	03H	
	MOVWF CALL CALL	HSERDAT SNDA_IT HS_SERVA	
;;	HSERDAT=N.	AC	
; ;WRITE EXAMPLE	1		
;WRITE RAM = C)xAA		
	MOVLW MOVWF	83H HSERDAT	
	CALL MOVLW MOVWF CALL	SNDA_IT 0AAH HSERDAT SNDA IT	
;	011111	_	
;OTHER USER C	CODE	-	
;OTHER USER C ;	GOTO	_ RESET	

Figure 3. bq2018 Schematic

C5—bypass for REG

R1—sense resistor

Interfacing to a Microcontroller

A microcontroller can interface the bq2018 using a general purpose I/O port. The WAKE output of the bq2018 interrupts the microcontroller when it detects charge or discharge activity greater than a programmable level. HDQ and WAKE are open-drain and require a pull-up resistor as shown.

Microcontroller Software

A microcontroller must configure the bq2018 and read and format its counter data to implement a battery capacity monitor. There are three main aspects of the software: Factory Configuration Program, Operating Program, and Serial Communication Program.

Factory Configuration Program (Test System Microcontroller)

The factory program configures a bq2018 based intelligent battery pack for operation. Actual battery monitor information, such as remaining capacity, compensation rates, and status flags may be stored in the bq2018 user RAM. The factory program initializes the user RAM and the bq2018. The battery maintains the bq2018 data with a low backup current of < 0.1μ A.

Note: 1. Write default values to RAM if necessary.

Operating Program (Host System Microcontroller)

The Operating program loop reads the bq2018 and updates the RAM locations for charge/discharge use conditions. The microcontroller periodically applies self-discharge and offset correction and calibrates remaining capacity and the full-charge reference based on state-of-charge and battery voltage.

Notes: 1. Requires A-to-D converter. 2. Typical loop time is once per minute.

Serial Communication Program (Test and Host Microcontroller)

The Designed to GO insert shows an example of the microcode required to communicate with the bq2018 using a port pin of a microcontroller. The code is for a PIC16C5X running at 8.0MHz.

Benchmarq is a registered trademark and Power Minder is a trademark of BENCHMARQ Microelectronics, Inc.

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1999, Texas Instruments Incorporated